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Motivation

Figure: A representative EDL
profile for operations on Mars

A Persistent Design Challenge

Martian atmosphere is thick
enough to create substantial heat
but not sufficiently low terminal
descent velocity

Martian surface environment is
very complex–rocks, craters, dust

Interesting landing sites are at
much higher elevations than
previously explored

Future missions require greater
landed masses within substantially
smaller landing ellipses than
previously demonstrated
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Not For the Faint-Hearted

Multi-Variable Design Optimization for Grown-Ups

A wide range of design elements must be taken into
consideration

Vehicle geometry, planetary models, aerodynamics, trajectory
analysis, aerothermal, TPS, sizing
Each design element represents a computationally demanding
study unto itself

End-to-end EDL design requires leveraging large, data-intensive
modules

Terrain elevation model (e.g. from MOLA), Mars-GRAM for
atmosphere model, CD ,CL look-up/generation tools,
aerothermodynamic analysis, trajectory generation/analysis

Even initial conditions for the design process are scary:

Altitude, velocity, flight path angle, azimuth angle, latitude,
longitude, angle of attack, and bank angle
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The Good News

Many Tools Exist for EDL Design

Systems Analysis of Planetary Entry, Descent, and Landing
(SAPE) from NASA Langley

Planetary Entry Systems Synthesis Tool (PESST) from Georgia
Tech

Program to Optimize Simulated Trajectories (POST) from
NASA Langley

HyperProbe for aerothermodynamic analysis from San Jose State

Planetary Mission Entry Vehicle (PMEV) Quick Reference Guide

Just to name a few...
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Some Challenges

How do we Integrate or Streamline These Tools?

Is it possible to create a simple, user friendly package that
supports efficient use of the vast array of detailed design tools?

Does there exist a single, consistent set of parameters that can
describe any design solution over a series of N flight phases?

Is there merit to investigating the use of stochastic search tools,
such as a genetic algorithm (GA)

Would result in exploration vs. exploitation of the design space

Approach: Parametric Entry, Descent, and Landing Synthesis
(PEDALS)



IPPW9
6/ 20

Sorgenfrei &
Chester

Introduction

PEDALS

The Genetic
Algorithm

Future Work

References

PEDALS Contributions

PEDALS is not an end-to-end design tool created to compete with
other such systems currently available to the EDL market

What PEDALS Is

An investigation into decision support algorithms with a
particular emphasis on genetic algorithms

A way to rapidly evaluate the space of EDL solutions

A hybridization of stochastic search techniques and detailed
deterministic models

Many models exist, goal is to leverage them efficiently

A first step towards defining software interfaces that would allow
rapid integration of 3rd party modules

(Hopefully) a means to address the lack of access in Europe to
ITAR-controlled software technology
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Overall Approach

Make Use of What Exists

Optimization engine
randomly creates and then
evolves a population of
design solutions

This population of solutions
is decoded into a usable form,
passed to a trajectory tool

Trajectory propagation
requires access to terrain
data, atmosphere data, etc.

Output is passed to
visualisation tool, evaluated
per certain metrics

Figure: Major components of the
PEDALS system
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Emphasis on Modularity

Figure: A wide range of models and databases can be used to support
PEDALS
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Emphasis on Modularity

Figure: Ultimately, a stand-alone visualisation module could be used to
provide a user-friendly interface
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Some Possible Strengths

Flexibility Through Stochastic Search

Randomized search of design space via GA does not guarantee
entire space will be tested, however large area can be rapidly
traversed

For EDL, this could enable interesting design approaches

Fix entry interface and landed conditions, optimize flight path
Fix all initial conditions, optimize everything else
Optimize from fixed initial conditions then re-tune those
conditions

No limitation to number, type of tools that are implemented,
possibly even in parallel

Performance metrics can be tuned in a transparent, user friendly
manner via the GA fitness function
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Some Inherent Challenges

How do we define discrete phases of flight? What happens at
the interfaces between these flight phases?

What is the best way to homegenize various initial condition
standards and system assumptions?

What is an elegant way to integrate the possibility of active
control technologies?

There are many ways for mass to change (TPS ablating,
thrusters firing, heat shields dropping) that are connected to the
phases of flight–integrating these discrete events with a
continuous trajectory is tricky
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Design Approach: Genetic Algorithm

EDL Requires Multi-Variable Design Optimization

Genetic Algorithms (GAs) have been widely used for complex
optimization problems (Cage et al. 1994, Krishnakumar 1992)

Design traits are encoded as genes, grouped onto chromosomes

Allows designer to rapidly search a large portion of the design
space in parallel–n designs evolved for m generations

Driven by ‘natural selection’ and randomized evolutionary
operators of crossover and mutation

Natural selection dictated by a user-defined fitness function

Design solutions that are deemed more fit as per the fitness
function are more likely to ‘reproduce’ during algorithm
execution
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GA Implementation

Advantages to GA Approach

Possibility of studying different
design variable interdependencies
through chromosome structure

Create one chromosome that
tests different system initial
conditions, another that trades
on traditional design metrics

Ability to adjust design variable
resolution through gene allocation

Flexibility of assessing multiple
performance metrics via fitness
function/death penalty
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Gene Structure

Each design element can be encoded with a maximum of 16 bits

Hybrid between discrete (e.g. flight phase transition) and
continuous (e.g. nose radius) design variables

Require design variable information for each phase of flight
(currenly using entry plus 5 flight phases)–all stored as genes

Crossover/mutation implemented as targeted bit flips, have to
be careful about implications for hybrid structure
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Fitness Function Structure

The Driver for Natural Selection

Objective is to maximize relevant figures of merit–for EDL this
might included landed mass, velocity at impact, Euclidean
distance from landing target, total heat flux

Possible to combine function with a so-called death penalty that
discards certain design solutions off-hand (e.g. if maximum
deceleration limit is exceeded)

When using multiple performance metrics user can include
weight factors to achieve a certain balance

f = −(α ·M + ε · Vf + Rf ) (1)

Where M is the landed mass, Vf is the impact velocity, Rf is the
distance from the desired landing location at impact, α and ε are

user-tunable weight factors
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Implementation Considerations

The Problem Within the Problem

GA parameters–population size, number of generations,
crossover and mutation rates all impact performance of the
algorithm

Past research (Grefenstette 1986) provides some suggestions as
to viable design combinations

EDL is a hard, multi-disciplinary problem–possible that past
research is not valid for this work

Inclusion of multiple heterogeneous components (trajectory
simulators, aerothermodynamic models, spacecraft geometry
assessment) could be both a benefit and a liability for algorithm
execution
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Integration with Software Front-End

Figure: PEDALS user interface and flight visualisation engine
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Conclusions

A major goal of PEDALS is to create a modular system that is
comprised (mostly) of open interfaces

The whole system will only function as a result of the work
being done by experts in this room

PEDALS v0.3 would love inputs in the form of
data/models/tools

Any and all suggestions for improvement are more than welcome
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